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Abstract

Riblets are well-known as a passive mean for drag reduction in turbulent flow conditions, but their effectiveness for heat transfer

is quite controversial. In this paper we present the numerical results for fully developed laminar and turbulent flow and heat transfer

in a channel with triangular riblets. The turbulent study is performed by means of direct numerical simulation at a Reynolds number

Res ¼ 180 based on the wall-shear velocity, for a fluid with a Prandtl number Pr ¼ 0:71. Four different ribbed channels are con-
sidered, under a constant heat flux boundary condition, and correspond to ridge angle a ¼ 45� and 60�, and riblet spacing sþ ¼ 20

and sþ ¼ 40. The results obtained, for the flow and turbulent quantities, are in good agreement with past experimental and nu-

merical studies, and correctly reproduce drag reduction over the smaller sþ ¼ 20 riblets and drag increase over the larger sþ ¼ 40

riblets. The predicted heat transfer efficiency of riblets do not agree with some experimental results, and is below that of a flat plate

for all the configurations. The conditions for heat transfer enhancement are discussed.

� 2003 Elsevier Science Inc. All rights reserved.
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1. Introduction

Riblets are formed by streamwise ridges of different

cross-section (i.e. triangular, rectangular, L-shaped, etc.)

and when correctly designed and sized (Baron et al.,

1989), present the favourable property of reducing the

friction drag by as much as 8% in turbulent flow con-

ditions (Walsh, 1982), despite the increase of the wetted
surface area. Such drag reduction occurs only in tur-

bulent regime, while a drag increase is invariably ob-

tained in laminar conditions (Choi et al., 1991).

The potential applications of riblets were furthermore

confirmed in several practical cases (Coustols, 1998),

like a full scale flight test on an Airbus A320, and the

turbulent flow in internally grooved pipes, where sig-

nificant reductions in drag were measured. While several
works (Choi et al., 1993) have extended the knowledge

about the mechanisms associated with the drag reduc-

tion, some questions, like the origin and the net effects of

the mean secondary flow, are still matter of debate

(Goldstein and Tuan, 1998).

In heat transfer applications it is still unclear whether

it is possible to obtain a surface geometry that decreases

the skin friction, while augmenting the heat transfer

coefficient. The remarkable property of riblets to reduce

the drag while increasing the wetted surface area, makes

riblet-covered walls a potential candidate for effective

heat transfer applications. It is then important to eval-

uate whether riblets, with different cross-sections, might
increase the so called Reynolds analogy factor, defined

as 2St=Cf , where St is the Stanton number and Cf is the
skin-friction coefficient, beyond that on a smooth wall.

The effectiveness of riblets for heat transfer was only

recently experimentally investigated, however these

studies did not clearly establish whether riblets, with

different cross-section, produce a net variation in heat

transfer in comparison to the flat plate value. The first
comprehensive experimental investigation, which con-

sidered riblets of different cross-shape and size, was

carried out by Walsh and Weinstein (1979); a heat

transfer coefficient 10% larger than that of a smooth

surface was measured, within the drag reducing regime

of the riblets sþ 6 30, where sþ ¼ sus=m and s is the width
of the riblet. Lindemann (1985), who experimentally

studied the heat transfer efficiency for various surface
geometries, discovered that the triangular riblets
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displayed the highest Reynolds analogy factor, with an

increase in the heat transfer coefficient of as much as

36% for the riblets with sþ ¼ 16. In a recent experi-

mental study Choi and Orchard (1997) measured the

heat transfer characteristics of triangular riblets in a

thermal turbulent boundary layer. Their results indicate

that the heat transfer coefficient over the riblet-covered

surface is increased, from that of a smooth surface, by as
much as 10% within their drag-reducing regime, and up

to 30% in the drag-increasing regime of riblets. Macie-

jewski and Rivir (1994) investigated experimentally the

effects of free-stream turbulence and surface riblets on

the heat transfer rate in a linear turbine cascade. Their

results seem to contradict the previous investigators,

since they observed that, under certain conditions, sur-

faces with riblets can reduce the average heat transfer
rate in the cascade by as much as 7%.

The discrepancies between different experimental in-

vestigations might be attributed to the fact that heat

transfer takes place in a thin layer just above the wall,

where measurement uncertainties are usually large, and

to spurious effects, like lateral heat conduction and ra-

diation heat transfer (Choi and Orchard, 1997), which

are difficult to control in an experimental set-up; in

addition, in some of these experimental studies, it is

unclear whether the measurements were taken when the

thermal development was complete.
Given these uncertainties, it is believed that numerical

simulation represents a useful complement to experi-

mental investigation, particularly in view of controlled

boundary conditions and absence of side-effects, and

might constitute the only available tool for subsequent

geometrical optimization.

The direct numerical simulations (DNS hereafter) of

the sole turbulent flow over riblets have been already
performed (Choi et al., 1993; Chu and Karniadakis,

1993; Goldstein et al., 1995) and some of these numer-

ical simulations (Choi et al., 1993; Goldstein et al., 1995)

Nomenclature

A area

cðb; cÞ correlation coefficient between b and c
c specific heat

Cf skin-friction coefficient

D drag force on the wall

h riblet height

Lx, Ly , Lz length of the domain in x, y, z direction
n coordinate normal to the wall surface
Nu Nusselt number, Eq. (8)

Nx, Ny , Nz number of grid points in x, y, z direction
p periodic part of the pressure field

p� pressure field

Pr molecular Prandtl number, Pr ¼ m=j
qw wall heat-flux

Re4d bulk Reynolds number, Re4d ¼ 4dum=m
Res Reynolds number based on friction velocity,

Res ¼ usd=m
sþ dimensionless riblet spacing, sþ ¼ uss=m
St Stanton number, Eq. (9)

T periodic part of the temperature field

T � temperature field

Ts friction temperature, Ts ¼ qw=ðqcusÞ
t time

tref reference time, tref ¼ d=us

u streamwise velocity component

u velocity vector

us friction velocity, us ¼ ðsw=qÞ1=2
v wall normal velocity component

w spanwise velocity component

x unit vector for the streamwise coordinate

x; y; z Cartesian coordinates

yw vertical distance from the solid wall

Greeks

a ridge angle (deg)

DTf difference between the flat wall mean tem-

perature and the bulk temperature

DTr difference between the riblet mean tempera-

ture and the bulk temperature

DTfr difference between the two temperature drops

DTf � DTr
Dt computational time-step

d half-channel height

g efficiency

j molecular thermal diffusivity

m kinematic viscosity

q density

sw wall shear stress

Uy energy flux in vertical direction

Subscripts

b bulk

c centreline

f flat wall

m mean

n normal
r riblet wall

rms root mean square

w wall

s friction value

0 at time t ¼ 0

Superscripts

þ dimensionless length, yþ ¼ usy=m
0 fluctuating value

n time level
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were quite successful in reproducing the global drag

reduction observed experimentally, and also in clarify-

ing the corresponding mechanisms involved.

In the attempt to predict the thermal field in the
turbulent regime, numerical analyses based on turbu-

lence models have been performed by Launder and Li

(1993) and, recently, by Benhalilou and Kasagi (1999).

In the former study, a difficulty in predicting correctly

even the drag variation was experienced. The latter

work, based on a non-linear low-Reynolds number k–�
model with several turbulent heat flux representations,

has shown that, by comparison of the predicted drag
variation with previous experimental data, the turbu-

lence model adopted can simulate the turbulent flow

over riblets reasonably well. However, there are signifi-

cant discrepancies between their heat transfer results

and some of the experimental studies, since they found

that the heat transfer performance can be increased,

beyond that on a smooth wall, only for high Prandtl

number fluids, whereas the experiments (Walsh and
Weinstein, 1979; Lindemann, 1985; Choi and Orchard,

1997) indicate a significant increase for air flow.

In this study, we perform the DNS of turbulent flow

and heat transfer over triangular riblets, with the ob-

jective to investigate their heat transfer effectiveness. The

computational domain is a channel, where one of

the walls is a plate with triangular riblets, and the op-

posite wall is a flat plate. Constant heat flux is assumed
at both walls. The numerical algorithm adopted is based

on a time-accurate, finite volume scheme previously

developed for Cartesian coordinates (Nobile and Onesti,

1997; Piller and Nobile, 2002), and extended later to

boundary-fitted geometries. Successful validation stud-

ies of the numerical procedure have been performed for

the standard case of fluid flow and heat transfer in a

parallel-plate channel, in laminar and turbulent regime,
and a selection of the results will be illustrated.

The simulations of the riblet flow and heat transfer is

performed for the turbulent case at a Reynolds number,

based on the wall-shear velocity, Res ¼ 180, and for four

riblet geometries. The four configurations, with riblet

spacings expressed in wall units sþ ¼ 40 and sþ ¼ 20,

and ridge angle a ¼ 45� and 60�, are the same as those
studied by Choi et al. (1993), and were chosen in order
to better compare the turbulent flow results with avail-

able data.

The results obtained, for the global skin friction and

second-order turbulence statistics, agree very well with

those reported in past experimental and numerical

studies (Walsh, 1982; Suzuki and Kasagi, 1994; Choi

et al., 1993) and with the results of a preliminary in-

vestigation (Nobile et al., 2000) carried out on a coarser
grid and a smaller domain. However, no evidence of

heat transfer enhancement emerges from the simulations

which, on the contrary, clearly indicate that the heat

transfer coefficient, for all configurations, is significantly

lower than that on a smooth wall. The predicted value of

the heat transfer coefficient is in good agreement with

the numerical results reported by Benhalilou and Kasagi

(1999).
We finally agree with Benhalilou and Kasagi (1999) in

asserting that it is hard to find physical arguments for

the heat transfer augmentation over riblets at Pr ¼ 0:71.
We believe that other secondary effects, which were not

accounted for in our simulations, might have played a

significant role in the heat transfer increase observed in

some experimental studies.

2. Computational domain

The flow geometry and coordinate system are illus-

trated in Fig. 1. The upper wall is a flat plate, whereas

the lower wall is covered with riblets. Fully developed

flow and thermal conditions are assumed in the

streamwise direction.
The computational domain for the turbulent simu-

lations is larger (twice larger in the spanwise direction)

than the minimal flow unit of Jim�eenez and Moin (1991)
for a Reynolds number Res ¼ 180, and it is also larger

(3/2 times larger in the streamwise direction and 5/4

times larger in spanwise direction) than that of the DNS

study on riblets performed by Choi et al. (1993) with a

second order finite difference algorithm that is compa-
rable to our numerical method. Although we cannot

claim that our results are independent of domain size
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Fig. 1. Geometry of the problem: (a) three-dimensional view of the

computational domain; (b) cross-sectional view.
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and grid resolution, the adequacy of our choice is sup-

ported by the agreement of the main flow and heat

transfer results with those obtained in a preliminary

study (Nobile et al., 2000) on a smaller domain and a

coarser grid. The detailed description of the size of the

domain, mesh size, riblet spacings and ridge angles for

the four configurations is displayed in Table 1. The

preliminary laminar computations are carried out on the
same four riblet geometries but over smaller domains,

including only one riblet.

In order to assess the accuracy of the computational

procedure, the plane channel in turbulent conditions is

investigated, for the same values of Res and Pr. The
computational box for the plane channel is the same

used for the riblets, with 33� 129� 65 grid points.

3. Mathematical formulation

It is assumed that the flow is described by the three-

dimensional, unsteady Navier–Stokes and energy equa-

tions with constant thermophysical properties. The
equations are made dimensionless using the following

reference quantities: d, the channel half-height, for

length, us ¼ ðsw=qÞ1=2 for velocity, Ts ¼ qw=ðqcusÞ for
temperature, and tref ¼ d=us for time. In the preceding

definitions, sw is the wall-shear stress and qw is the wall
heat-flux. The Reynolds number and the Prandtl num-

ber are defined as

Res ¼
usd
m

; Pr ¼ m
j

where j is the thermal diffusivity.
The assumption of fully developed flow and heat

transfer implies that the pressure and temperature fields

can be expressed as the sum of a fluctuating periodic

component, and a linear gradient:

p� ¼ p � dp�

dx

����
����x ð1Þ

T � ¼ T þ dT �

dx

����
����x ð2Þ

where the pressure gradient is given, from a force bal-

ance, by

dp�

dx

����
���� ¼ qu2s=d ð3Þ

and the temperature gradient is given, from an energy

balance, by

dT �

dx

����
���� ¼ qw

qcubd
ð4Þ

In Eqs. (1)–(4) the overbar indicates time averaged

quantities. With the chosen set of reference quanti-

ties, and using Eqs. (1) and (2), the non-dimensional

governing equations for mass, momentum and energy
are

r 
 u ¼ 0 ð5Þ

ou

ot
þ ðu 
 rÞu ¼ �rp þ 1

Res
r2uþ x ð6Þ

oT
ot

þ u 
 rT þ u
ub

¼ 1

ResPr
r2T ð7Þ

where ub is the bulk (mean) velocity, the last term on

the right-hand side of Eq. (6) represents the imposed

pressure gradient in the streamwise direction, and the
last term on the left-hand side of Eq. (7) takes into ac-

count the linear streamwise temperature gradient, ex-

pressed by Eq. (4). Periodic boundary conditions are

applied for velocity, pressure and temperature, in the

streamwise (x) and spanwise (z) directions. No-slip

conditions are enforced at the walls, together with

constant heat flux, and thus the wall temperature is al-

lowed to fluctuate. Due to the homogeneity of the flow
and temperature fields in the streamwise and spanwise

directions, within a periodic length equal to the half-

width of the riblet, all the relevant quantities are ob-

tained by first averaging along x and time. The average
is then performed over all the riblets, and once more

across the riblet centreline.

3.1. Heat transfer parameters

The heat transfer rate, for both flat and riblet walls, is

evaluated through the Nusselt and Stanton numbers,

which, in terms of dimensionless quantities, become:

Nu ¼ 4ResPr
ðTw � TbÞ

ð8Þ

St ¼ 1

ubðTw � TbÞ
ð9Þ

Table 1

Parameters for the simulation of turbulent flow and heat transfer over riblets

Lx=d, Ly=d, Lz=d Nx � Ny � Nz a (deg) s=d sþ h=d hþ

Case A 1.5p, 2, 0.36125p 33� 129� 161 45 0.227 40.9 0.113 20.4

Case B 1.5p, 2, 0.36125p 33� 129� 161 60 0.227 40.9 0.197 35.4

Case C 1.5p, 2, 0.36125p 33� 129� 321 45 0.113 20.4 0.056 10.2

Case D 1.5p, 2, 0.36125p 33� 129� 321 60 0.113 20.4 0.098 17.7
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We point out that, since the surface modification by

riblets has a similar size to that of surface roughness, we

compare the forces applied at the two walls, irrespective

of the different surface of application, and that the heat
flux imposed on the projected surfaces is the same. This

is a common practice among other authors (Walsh and

Weinstein, 1979; Choi and Orchard, 1997).

In order to evaluate the heat transfer effectiveness of

the riblet surface, we make use, in agreement with

Benhalilou and Kasagi (1999), of the heat transfer effi-

ciency of the surface, defined as

g ¼ 2Str=Drð Þ
ð2Stf=DfÞ

ð10Þ

where the subscripts �r� and �f� refer to the riblet and flat
wall, respectively, and D represents the non-dimensional
averaged drag force on the wall:

D ¼
Z
A

ou
on

����
w

dA ð11Þ

where n is the coordinate normal to the surface, and A
denotes the wetted area of the surface and u the

streamwise velocity component, all these quantities be-

ing dimensionless. The comparison between the flat wall

values and the values computed on the wall with riblets

relies upon the assumption that the turbulent flow near

one wall of the channel does not affect the skin friction

and heat transfer at the other (Choi et al., 1993).

4. Numerical methods

In this section, a summary of the numerical procedure

is presented. The Navier–Stokes and energy equations

(5)–(7) are solved by a second order projection scheme,

as proposed by Gresho (1990); the numerical integration

from the time instant tðnÞ to tðnþ1Þ ¼ tðnÞ þ Dt, involves
the following steps:

1. Calculation of the new temperature field:

T ðnþ1Þ � T ðnÞ

Dt
¼ � 1

2
3 u 
 rTð ÞðnÞ
h

� u 
 rTð Þðn�1Þ
i

þ 1

2ResPr
r2T ðnþ1Þ�

þr2T ðnÞ�� uðnÞ

uðnÞb
ð12Þ

2. Calculation of the intermediate velocity field euuðnþ1Þ:
euuðnþ1Þ � uðnÞ

Dt
¼ � 1

2
3 u 
 rð ÞuðnÞ
�

� u 
 rð Þuðn�1Þ
	

þ 1

2Res
r2uðnþ1Þ
�

þr2uðnÞ
�
�rp þ x

ð13Þ

Fig. 2. Computational mesh near the a ¼ 45� riblets.

Table 2

Results for the laminar simulations

Dr=Df Str=Stf g Nur Nuf

Plane channel

Present 1.000 1.000 1.000 – 8.233

Analytical (Bhatti et al.) – – – – 8.235

FEM, 6 refinements 1.000 1.000 1.000 – 8.235

Case A

Present 1.0260 0.9554 0.9312 7.9628 8.3344

FEM, 8 refinements 1.0252 0.9533 0.9298 7.9481 8.3379

Case B

Present 1.0662 0.8989 0.8431 7.6219 8.4793

FEM, 9 refinements 1.0601 0.8931 0.8424 7.5771 8.4845

Case C

Present 1.0130 0.9765 0.9640 8.0895 8.2839

FEM, 8 refinements 1.0132 0.9754 0.9627 8.0833 8.2867

Case D

Present 1.0328 0.9459 0.9159 7.9036 8.3554

FEM, 8 refinements 1.0292 0.9428 0.9160 7.8807 8.3589
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3. Calculation of the auxiliary variable / from the Pois-

son equation:

r2/ ¼ reuuðnþ1Þ ð14Þ
with o/=on ¼ 0 at all wall boundaries, where n is the
coordinate normal to the wall.

4. Update, by projection, of the tentative velocity euuðnþ1Þ,
in order to obtain a divergence free velocity field

uðnþ1Þ from the relation:

uðnþ1Þ ¼ euuðnþ1Þ � r/ ð15Þ
5. Computation of the new pressure field at tðnþ1Þ from:

pðnþ1Þ ¼ pðnÞ þ /
2Dt

ð16Þ

In Eqs. (12) and (13), temporal discretization is done

with the Crank–Nicolson scheme on the viscous term,
and the Adams–Bashfort scheme for the convective

term. Eqs. (12)–(14) are integrated by a finite volume

method on a underlying orthogonal boundary fitted grid

in the y–z plane, and a uniform Cartesian discretization

in the streamwise x direction, the velocity components u,
v and w being evaluated on an auxiliary staggered mesh.
The detailed a ¼ 45� computational mesh near the ri-

blets, in the cross-flow plane, is illustrated in Fig. 2. The
variable values and the spatial derivatives at the cell

faces are computed using second order central difference

relations.

The transport equations (12) and (13) are solved by

the approximate factorization method, while the time-

consuming pressure Poisson equation (14), which arises

at every time-step, is solved by a fast Poisson solver,

based on FFT decomposition along the x (streamwise)
direction and block Gaussian elimination (Ghia and

Ghia, 1988) in the decoupled y–z planes. Accordingly,
the procedure is second order accurate in both time and

space. A more detailed description of a similar numeri-

cal algorithm, although on a Cartesian grid, can be

found in a DNS study of turbulent heat transfer in a

square duct (Piller and Nobile, 2002).

The CPU time per time-step for the larger case C and
case D grid is about 16 s, on a single Power 4 1300 MHz

processor of an IBM SP4.

The initial conditions for the velocity field are ob-

tained from the correlation for the mean turbulent ve-

locity profile (Bhatti and Shah, 1987), by superimposing

random fluctuations on the cross-flow velocity compo-

nents; the initial conditions for the temperature are de-

rived from the streamwise velocity initial field through
Eq. (17):

T0 ¼ �Pr 
 u0 ð17Þ
After about 100 time units (d=us), when a statistical

steady-state is reached, the integration continues in or-

der to sample time-averaged local and global quantities.

The sampling time for the four cases is between 35 and

36 time units, during which a realization of the flow and

temperature field is stored every 0:1d=us. We observed

that, due to the limited size of the domain, this sampling

time is barely sufficient to discriminate the variations in
some global quantities, like the ratio of the drag of the

riblet-covered surface to that of the smooth wall. After

averaging, the remaining fluctuations are about �2% for

the friction factor and the Stanton number. Therefore,

the error bound for the statistical sampling error is es-

timated to be of the order of �2%.

5. Results and discussion

5.1. Laminar cases

The laminar simulations have been carried out on the

same four riblet geometries of the turbulent cases, whose

riblet spacing s=d and ridge angle a are specified in Table
1. These simulations have been conducted in order to
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Fig. 3. Turbulent flow in a plane channel at Res ¼ 180: (a) mean

velocity profile; (b) mean temperature.
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first check the numerical accuracy of our procedure, and

to estimate the heat transfer performance of riblets in

the steady, laminar regime.

The calculations have been performed using the same
computer code we have developed for DNS together

with a simpler, but more accurate, approach based on a

two-dimensional model implemented via the FEMLAB

finite element package (Femlab Reference Manual,

1999). In the latter implementation, only a pair of two-

dimensional Poisson equations are solved, since equa-

tions (5)–(7), in the case of fully developed laminar flow

in channels, reduce to:

o2u
oy2

þ o2u
oz2

¼ �Res ð18Þ

o2T
oy2

þ o2T
oz2

¼ ResPr
u
ub

ð19Þ

The calculations with the DNS code are carried out

for Res ¼ 10 which corresponds to a Reynolds number

Re4d � 133, based on the mean velocity and twice the

height of the channel, and for a Prandtl number

Pr ¼ 0:71; these data are however just a requirement of
the solver, since it is well known that the results, in fully

developed laminar regime, are independent of Res and
Pr.
The resolution in spanwise and wall normal direc-

tions for the laminar simulations is the same as the

turbulent case, but the domain includes only one riblet,

thus reducing the number of cells in the spanwise

direction to 32; four cells are used in the streamwise

direction. In the two-dimensional unstructured FEM

approach, the equations are solved using the adaptive-

grid strategy provided by FEMLAB, which led to results

that were independent of further grid refinements to

better than 0.1% of the computed values, using up to
1.2� 105 grid points.
All the laminar results are reported in Table 2. The

value of Nu obtained on the parallel plane-channel with
uniform heat flux at both walls differs by less than 0.03%

from the analytical value (Bhatti and Shah, 1987). Over

riblets, the agreement between our results and those

obtained with FEMLAB can be considered very good,

with maximum differences of 0.6% for the drag ratio and
the heat transfer coefficient, and an average error of

0.3%.

The results indicate, in agreement with Choi et al.

(1991), that the riblets present an increased drag in

laminar flow, and that the drag is higher for the larger

riblets; moreover the drag is higher over the sharper

riblets. The Nu value is smaller over the grooved walls,
and this reduction is larger for the sþ ¼ 40 riblets; for a
fixed value of riblet spacing, the difference between the

Nusselt number on the two walls is twice larger on

the a ¼ 60� riblets. The increase in drag, together with
the decrease in heat transfer coefficient, lead in turn to a

significant decrease of the efficiency g, particularly for
the larger and sharper case B riblets.

5.2. Turbulent flow in a plane channel

The simulation of the turbulent flow and heat transfer

in a plane channel has provided a mean to check the

accuracy of our code in performing the DNS at a Rey-

Table 3

Overall results for the turbulent simulations, at Res ¼ 180 and Pr ¼ 0:71

Dr=Df Str=Stf g Nur Nuf

Plane channel

Present 1.00 1.00 1.00 – 40.5

Correlation (Bhatti et al.) – – – – 39.3

Case A

Present 1.05 0.89 0.84 35.1 39.6

Exp. (Walsh) 1.03 – – – –

DNS (Choi et al.) 1.02 – – – –

Case B

Present 1.13 0.78 0.69 30.5 38.9

Exp. (Walsh) 1.11a – – – –

DNS (Choi et al.) 1.12 – – – –

Case C

Present 0.99 0.88 0.89 35.6 40.3

Exp. (Walsh) 0.98 – – – –

DNS (Choi et al.) 0.95 – – – –

Case D

Present 0.98 0.74 0.75 30.4 40.8

Exp. (Walsh) 0.96a – – – –

DNS (Choi et al.) 0.94 – – – –
aDenotes data obtained from the case sþ ¼ hþ, that is a � 63�.
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nolds number Res ¼ 180, equivalent of about

Re4d ¼ 12� 103, on a domain with the same dimensions

and the same number of grid points in the streamwise

and wall normal directions as the ribbed channels, but
with only 65 grid points in the spanwise direction.

The velocity profile, illustrated in Fig. 3, is compared

with the law of the wall u ¼ 5:2þ ln yþ=0:41, with the
results from a finite difference, 1293 grid points, simu-

lation (Andersson and Kristoffersen, 1992), and with the

profile from the spectral DNS by Kim et al. (1987) that

better represents the low Reynolds flow features. The

agreement between our results and the other data can be
deemed reasonable.

The absolute value of the temperature difference be-

tween the wall and the fluid is compared in Fig. 3 with

the Kader log-law (Kader, 1981), obtained from exper-

imental data and which, for Pr ¼ 0:71, gives T ¼ 3:83þ
2:12 ln yþ. As can be observed, the agreement between
our results and this empirical law is quite satisfactory.

All the fluid flow results, together with the second
order statistics illustrated in the following section,

though obtained with a rather coarse grid and a limited

domain, agree sufficiently well with the reference data

and with the logarithmic law of the wall; the same level

of accuracy is achieved for the main heat transfer

characteristics, like the Nusselt number that is compared

in Table 3 with the value provided by an experimental

correlation (Bhatti and Shah, 1987).

5.3. Turbulent flow over riblets

5.3.1. Mean secondary flow

The calculation of turbulent flow above riblets reveals

the presence of mean secondary flows, which consist of

matched pairs of streamwise vortices that are not sus-

tained in a fully developed laminar flow of the same
geometry.

The turbulent cross-flow mean velocities are illus-

trated in Fig. 4, where the upward motion above the

peak, and the downward flow towards the valley, is

evident and in agreement with the experimental findings

of Suzuki and Kasagi (1994), and the DNS study of

Choi et al. (1993).

The maximum intensity of the mean secondary ve-
locities in the drag reducing case D is 0.2% of the

centreline velocity, while in the drag increasing case B it

represents the 0.7% of the maximum streamwise veloc-

ity; these values almost coincide with the results of the

DNS of Choi et al. (1993) who calculated values of 0.2%

and 0.8%, respectively, on the same geometries and

match very well the measured values by Suzuki and

Kasagi (1994), despite some differences in riblet config-
uration. In the sþ ¼ 40, a ¼ 45� case A we find one more

pair of weaker, counter-rotating vortices in the riblet

valley, clearly visible in Fig. 4.

5.3.2. Turbulence intensities

The root mean square velocity fluctuations across the

channels with a ¼ 60� riblets, are depicted in Fig. 5. We
obtained, in agreement with the experiments of Suzuki

and Kasagi (1994) and the Choi et al. (1993) computa-
tions, that in the drag-reducing configurations the peak

values of the root mean square of all velocity compo-

nents are decreased by about 5% compared with the flat

side values; this is also true in comparison with the plane

channel results.

In the drag augmenting configuration case B, the

maximum in urms is 15% smaller than the flat side value

above the riblet valley, but reaches the same values over
the riblet tip. Vice versa the peaks of vrms and wrms are
higher, 7% and 10% respectively, over the grooves. It

should be noticed in Fig. 5 that the root mean square

values in the sþ ¼ 40 case B are decreased on the flat

side besides being increased over the riblets.
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The location of the maximum streamwise turbulence
intensity above the riblet tips is always closer to the wall

than what happens for the flat plate, whereas the loca-

tions of the peaks above the riblet valleys are further

away from the wall; this trend, observed also by Choi

et al. (1993), is clear from Fig. 6 for the a ¼ 45� case A
and case C, where the variable yw represents the vertical
distance from the solid wall.

5.3.3. Reynolds shear stress

The Reynolds shear stress �u0v0 is shown in Fig. 7 as
a function of the vertical distance yw from the solid wall.

In the drag decreasing case D, the maximum Reynolds

stress above the riblets is reduced by 8%, while in the

drag increasing case B it is significantly increased, up to

24%, over the riblet tip, and remains unaltered above the
riblet valley.

The amount of reduction of velocity fluctuations, and

particularly the decrease of the Reynolds stress near the

drag decreasing riblets are, in our computation, very

similar to the DNS results of Choi et al. (1993) and the

values measured by Suzuki and Kasagi (1994).

The decrease of the Reynolds stress over the sþ ¼ 20

riblets, where there are no considerable variations in the
mean velocity field in comparison with the flat channel,

confirm the measured drag reducing features of the

small riblets.

5.3.4. Mean velocity and temperature

The velocity and temperature profiles in the loga-

rithmic region are depicted in Fig. 8, where they are also
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compared with the results for the plane channel. Cau-

tion should be exercised when judging these plots, since

they are made using the riblet midpoint as y ¼ 0 for

both velocity and temperature plots, while it is well
known (Baron et al., 1989; Choi et al., 1993) that a

virtual origin, defined as the location of an imaginary flat

surface which matches the riblet velocity profile above

the viscous sublayer, should be more appropriate,

though there is no general consensus about the proper

evaluation of the virtual origin. Furthermore in these

plots the temperature was changed in sign and the zero

mean value was assigned to the riblet mid height.
The figure shows that the slope of the mean velocity

profiles above the viscous sublayer is similar to that of

the flat channel, although there is a clear upward shift of

the sþ ¼ 20 case C and case D velocity profiles, in

comparison with the sþ ¼ 40 cases. This shift is an in-

dication of the increase of the viscous sublayer thickness

(Choi et al., 1993), and results in a net drag reduction.

The temperature plots in Fig. 8 are even more

meaningful since for all configurations, no matter whe-

ther the origin is located in the valley, tip or mid-height

of the riblet, the mean temperature profiles are well
above the flat channel values, while maintaining the

same slope. This is a clear indication of a thickening of

the conduction sublayer, which in turn leads to a re-

duction of the heat transfer coefficient.

5.3.5. Drag and heat transfer

The case A time history of the drag ratio, Stanton

ratio and overall efficiency is shown in Fig. 9. An in-
termittent behaviour of such global quantities, due to

the limited size of the computational domain, is ob-

served. The large amplitude and period of the oscilla-

tions justifies the requirement of a long sampling time

for the proper evaluation of the drag and the heat

transfer rate. However, it is evident from the same Fig.

9, that the Stanton ratio Str=Stf , and consequently the
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heat transfer efficiency g, are almost constantly less than
one, even in the case of highest time averaged Stanton

ratio. The resulting time and space averages of the glo-

bal quantities, performed in a time interval of more than
35d=us, for each turbulent case, are reported in Table 3.

The predicted values of the drag-ratio are in good

agreement with past experimental (Walsh, 1982) and

DNS (Choi et al., 1993) results, since, as already ob-

served, a 2% error on the evaluation of this quantity is

expected as a consequence of the limited sampling time

and domain.

The Nusselt number values evaluated at the riblet
wall Nur, are all lower than Nuf , with differences between
11% and 25%, for case A and case D, respectively. The

Stanton ratio values are well below one in all configu-

rations. These results indicate, within the limitation due

to the low value of Reynolds number that we consider,

that there is certainly no heat transfer augmentation

over riblets for Pr ¼ 0:71.
It is difficult to try to explain the reasons of the dis-

crepancy between our numerical results and some of the

experimental studies (Walsh and Weinstein, 1979; Choi

and Orchard, 1997), where a net heat transfer increase

was observed on riblet-mounted surfaces, for the same

Pr value. These discrepancies might be partially attrib-
uted to the difficulty of the measurements near the small

grooves, and to spurious effects, like lateral heat con-

duction and radiation heat transfer, but the magnitude
of the differences suggests that other causes should be

involved. Possibly the measurements were conducted at

an intermediate stage of the thermal development, when

the layer is thinner and favourable heat transfer coeffi-

cients are likely to be measured.

On the other hand our results agree well with the

main conclusions of the numerical work of Benhalilou

and Kasagi (1999), which found that, for ribbed chan-
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nels, the heat transfer performance can be increased,

beyond that on a smooth wall, only for high Prandtl

number fluids.

We remark, in support of the conclusions drawn here,
that the a ¼ 45� cases were investigated in a preliminary
study (Nobile et al., 2000) where the main findings like

the drag-ratio, the Stanton number ratio and overall

efficiency were calculated on coarser grids, of about one

fifth of the present grid points, and on an almost twice

smaller domain. The results differ by no more than 2%

from the present ones, and the difference in Nusselt

number is below 5%. Considering the extent of the re-
duction in the heat transfer coefficients we believe that

the main conclusions of this study, i.e. the heat transfer

decrease on sþ ¼ 20 and sþ ¼ 40 riblets at low Reynolds

number for a Pr ¼ 0:71 fluid, can hardly be questioned.

5.3.6. Conditions for heat transfer enhancement

In this section we try to analyse the conditions that

can lead to heat transfer enhancement, compared to the

flat plate, of riblets. The aim is to look for the conditions

under which the difference between the mean tempera-

ture at the riblet wall and the bulk temperature, DTr,
decreases in comparison with the equivalent on the flat

wall DTf . In particular, under a drag reducing regime,
and under the assumption of no variations of the flow

field, a positive value of the difference between the

two temperature drops DTfr ¼ DTf � DTr > 0 implies a

favourable efficiency value g > 1.

Fig. 11. Mean advective vertical heat flux �vvT with superimposed vec-

tors of mean secondary flow: (a) case A; (c) case B. Total advective

vertical heat flux �vvT þ v0T 0 with superimposed vectors of mean sec-
ondary flow: (b) case A; (d) case B.

Fig. 12. Mean advective vertical heat flux �vvT with superimposed vec-

tors of mean secondary flow: (a) case C; (c) case D. Total advective

vertical heat flux �vvT þ v0T 0 with superimposed vectors of mean sec-
ondary flow: (b) case C; (d) case D.
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In our computations, where a low heat transfer co-

efficient is predicted for both geometries, the tempera-

ture difference value DTfr is always less than zero. In

what follows we try to analyze, leaving the flow field
quantities constant over the fixed geometry, if an in-
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Fig. 15. Instantaneous drag and temperature fluctuations contours at

the solid surfaces for case A and case C: (a) and (c) drag fluctuation;

(b) and (d) temperature fluctuation. Bright spots correspond to drag

and heat transfer increase.
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crease of the Prandtl number can possibly change the

sign of the difference between the two temperature

drops, as already reported by Benhalilou and Kasagi

(1999).
The contribution of each term of the time-averaged

energy flux Uy in the y direction will be analysed sepa-
rately:

Uy ¼ � 1

RePr
oT
oy

þ vT þ v0T 0 ð20Þ

As a consequence of the thickening of the conductive

sublayer there is only a small area near the tip of the

riblet, as is shown in Fig. 10, where the local Nusselt

number is greater than the flat plate value, Nuf � 40; a

large reduction of the thermal layer thickness can en-

hance the contribution of the thermal diffusion term

�ðRePrÞ�1oT =oy to the heat flux in the zone near the
middle height of the riblet.

The mean advective enthalpy flux in vertical direction

vT takes into account the important effect of fluid

transport from the riblet tip towards the centre of the

channel, and from the core of the flow towards the wall
in the valley. It is represented for the four cases in Figs.

11a, 11c, 12a and 12c; the mean value is approximately

zero but the positive and negative peaks reach different

values depending on the position and the intensity of

the longitudinal vortices. It is unclear whether the

contribution of the mean advective term vT to heat

transfer would increase for a higher Prandtl number

fluid.
The turbulent vertical heat flux v0T 0 is depicted in Fig.

13; only small variations of v0T 0 between the riblet and
the flat wall curves can be observed for all cases except

for case B where a higher peak on the riblet tip and very

low values over the valley are observed. The tempera-

ture fluctuations, reported in Fig. 14, and all the velocity

Fig. 16. Instantaneous streamwise velocity and the absolute value of the temperature difference with the flat wall for case A and case C: (a) and (c)

streamwise velocity; (b) and (d) temperature.
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fluctuations in Figs. 5 and 6 are damped, or at least
uninfluenced, by the presence of the drag-reducing ri-

blets; this indicates that the turbulent activity is reduced,

and the turbulent vertical heat flux term is not likely to

contribute significantly to heat transfer, in particular in

the drag-decreasing cases.

The total advective heat flux in vertical direction

vT þ v0T 0 is depicted in Figs. 11b, 11d, 12b and 12d.

Isoflux lines are almost everywhere normal to the cross-
flow mean velocity vectors; this is a clear indication that

the convective heat flux follows the same paths of the

secondary velocities.

5.3.7. Instantaneous drag and heat transfer patterns

Typical patterns of the instantaneous drag and tem-

perature fluctuation on the riblet surfaces are illustrated,

for a ¼ 45�, sþ ¼ 20 and sþ ¼ 40, in Fig. 15; the strong
correlation of streamwise velocity and temperature gives

raise to a marked similarity between the drag and tem-

perature fluctuations. Drag increase areas, identified by

bright spots, correspond to high heat transfer zones, and

vice versa.

The instantaneous streamwise velocity and tempera-

ture fields in a cross-flow plane are dillustrated in Fig. 16

in case A and case C configurations. Again the two fields
are well correlated; it can be noticed that, due to Pr < 1,

the temperature field is slightly smoother than the

streamwise velocity.

In order to investigate the relation between the
streamwise velocity and the temperature fields over ri-

blets, the correlation coefficient cðu; T Þ, defined as

cðu; T Þ ¼ u0T 0

u0u0 T 0T 0

 �1=2 ð21Þ

is depicted in Fig. 17. It is not smaller over all riblet

configurations than on the flat wall except for case B,

where the low u–T correlation is associated with the

lowest efficiency in drag and heat transfer. The mini-

mum is reached in the valleys where the different

boundary conditions have a stronger effect; the cðu; T Þ
correlation coefficient loses its meaning on the wall,

where u0 ¼ 0.

6. Conclusions

The flow and heat transfer over riblets in both laminar

and turbulent regimes is investigated by means of direct

numerical simulation of the three dimensional, time de-

pendent flow and energy equations. The simulations
were performed over riblets of four different configura-

tions, for a fluid with Pr ¼ 0:71, representative of air.
The calculations in the laminar regime, where riblets

are ineffective in reducing the skin friction, reveal that

also the heat transfer effectiveness of the riblets is
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slightly lower than that of a flat wall. In particular, the

lowest efficiency is found on the riblets with the larger

ridge angle. A highly accurate, two-dimensional FEM

simulation is used to corroborate the laminar results and
to preliminarily validate our DNS code.

The simulations in the turbulent regime are per-

formed for a Reynolds number, based on the wall-shear

velocity, Res ¼ 180. The accuracy of the numerical

procedure in turbulent flows is first checked by com-

parison of the computed results with some available

correlations and past numerical works, for the case of

flow and heat transfer in a plane channel.
In the simulation of the turbulent flow and heat

transfer over riblets, all the mean flow features, the

turbulent quantities, and the drag ratio Dr=Df values,

agree well with past experimental and numerical studies.

The thermal field results, which do not follow some of

the experimental findings (Walsh and Weinstein, 1979;

Choi and Orchard, 1997), clearly show that the heat

transfer efficiency of riblets, in the turbulent regime, is
lower than that of a smooth wall at Pr ¼ 0:71, thus
further confirming the recent analysis of Benhalilou and

Kasagi (1999). The reasons for the discrepancy with

some of the experimental studies is unknown, but might

indicate that the measurements were conducted in con-

ditions far from complete thermal development, a basic

assumption of our study.

The attainment of a favourable efficiency value g > 1
over riblets would be possible for high Prandtl fluids,

where the thermal layer thickness becomes of the order

of the riblets height. Further experimental and numeri-

cal investigations of heat transfer over riblets, for high

Prandtl number fluids, should be carried out to clarify

this aspect.
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